Magnetic Reconnection in Solar Flares

Possible Roles for Reconnection:

1. Energy Storage:

photospheric reconnection (flux cancellation)

2. Trigger Mechanism:

current density

3. Energy Release:

Loss of Equilibrium Model

Reconnection Electric Field for Constant Alfvén Mach Number

Predictive Science CME Simulation

Flare Loop System

Apparent Motion of Loops & Ribbons

Shinkrage of Flare Loops Observed by Hinode XRT

Flare Reconnection Rate from Observations

NSO/Kitt Peak Magnetogram 18 Dec 1998

Boundaries at 1718:19 (y), 1805:46 (m), 2139:50 UT (b)

area σ swept out by flare ribbons

newly re-closed flux:

$$\Phi = \iint \mathbf{B} \cdot \mathbf{d}\sigma$$

voltage drop along *x*-line:

$$\int \mathbf{E} \cdot \mathbf{dl} = \frac{d\Phi}{dt}$$

Flare Reconnection Rate

Observed Reconnection Rate for X1.6 Flare

 $E_{\text{reconnect}} \sim 2 \text{ volts/cm}$

 $E_{\rm Dreicer} \sim 10^{-6} \text{ volts/cm}$

Observations of Reconnection Flows

Non-eruptive event of 17 Aug 2011

Tracking of Small Features in Current Sheet

Savage et al. 2010

Outflow Profiles for Petschek and Sweet-Parker Reconnection

Early MHD Numerical Simulations

Yan et al. (1992)

Fast-Petschek solutions not observed when the resistivity is uniform.

Incompressible Time-Dependent Nozzle Equations for Resistive MHD

$$a_t = -(Va)_x - Vb / B + \eta / a$$

$$a_{t} = -(Va)_{x} - Vb / B + \eta / a$$

$$b_{t} = -(Vb)_{x} + (\eta B / a)_{x}$$

$$(Va)_{t} = (V^{2}a)_{x} - aBB_{x} + Bb$$

$$(Va)_t = (V^2a)_x - aBB_x + Bb$$

$$()_t = \frac{\partial}{\partial t}$$
 $()_x = \frac{\partial}{\partial x}$

a: thickness of current layer

V: outflow

b: perpendicular interior field

B: parallel exterior field

 η : magnetic diffusivity

u: inflow

 b_a : perpendicular exterior field

 α : diffusion region length

L: global scale length

Evolution of Non-Uniform Resistivity Solutions

How to Calculate Reconnection Rate

Reduction to steady-state:

$$(xV)_x = V^{-1} - \eta(x) M_A^2 x^{-1}$$
.
(equation of Vasyliunas 1975)

Most solutions of this equation have an unphysical singularity!

Taylor expand steady-state equation:

$$V(x) = V_1 x + V_3 x^3 + \cdots$$

Eliminate singular solutions by requiring convergence:

$$\left| \lim_{n \to \infty} \left| V_n(M_{A \text{ stable}}) \right| = 0.$$

2D MHD Simulations for $\eta(x) = \eta_0 \operatorname{Exp}[-(x/l)^2]$

rate predicted by analytical theory: $M_{Ai} = 0.0370 > 4.9\%$ difference rate occurring in numerical simulation: $M_{Ai} = 0.0353 > 4.9\%$ difference

There are no free parameters in the theory.

Application to Simple Flare Model

Predicted Flow in Current Layer

 $\lambda \approx 20,000 \text{km}$

2D MHD Simulation of Late Phase Reconnection

Predicted Reconnection Geometry During Late Phase for Uniform Resistivity

But What if Resistivity is Nonuniform?

 λ_i : ion-inertial length $\approx 10 \text{ m}$

Current density dependent resistivity:

(Yokoyama & Shibata 2001)

Unanswered Questions

1. What is the length of the region where reconnection outflows are accelerated?

current observations \implies < 10^4 km scale of resistivity variation

Do slow shocks exist? If not, what replaces them? late phase of flare requires more than Sweet-Parker

3. How do 3D aspects change the 2D picture?